4 min read

排序分析结果作图

数据整理

library(vegan)
## 载入需要的程辑包:permute
## 载入需要的程辑包:lattice
## This is vegan 2.5-6
data("varespec")
pca <- rda(varespec)

首先看一下结果:

summary(pca)
## 
## Call:
## rda(X = varespec) 
## 
## Partitioning of variance:
##               Inertia Proportion
## Total            1826          1
## Unconstrained    1826          1
## 
## Eigenvalues, and their contribution to the variance 
## 
## Importance of components:
##                            PC1      PC2       PC3     PC4      PC5      PC6
## Eigenvalue            982.9788 464.3040 132.25052 73.9337 48.41829 37.00937
## Proportion Explained    0.5384   0.2543   0.07244  0.0405  0.02652  0.02027
## Cumulative Proportion   0.5384   0.7927   0.86519  0.9057  0.93220  0.95247
##                            PC7      PC8       PC9      PC10     PC11     PC12
## Eigenvalue            25.72624 19.70557 12.274191 10.435361 9.350783 2.798400
## Proportion Explained   0.01409  0.01079  0.006723  0.005716 0.005122 0.001533
## Cumulative Proportion  0.96657  0.97736  0.984083  0.989799 0.994921 0.996454
##                           PC13      PC14      PC15      PC16      PC17
## Eigenvalue            2.327555 1.3917180 1.2057303 0.8147513 0.3312842
## Proportion Explained  0.001275 0.0007623 0.0006604 0.0004463 0.0001815
## Cumulative Proportion 0.997729 0.9984910 0.9991515 0.9995977 0.9997792
##                            PC18      PC19      PC20      PC21      PC22
## Eigenvalue            0.1866564 1.065e-01 6.362e-02 2.521e-02 1.652e-02
## Proportion Explained  0.0001022 5.835e-05 3.485e-05 1.381e-05 9.048e-06
## Cumulative Proportion 0.9998814 9.999e-01 1.000e+00 1.000e+00 1.000e+00
##                            PC23
## Eigenvalue            4.590e-03
## Proportion Explained  2.514e-06
## Cumulative Proportion 1.000e+00
## 
## Scaling 2 for species and site scores
## * Species are scaled proportional to eigenvalues
## * Sites are unscaled: weighted dispersion equal on all dimensions
## * General scaling constant of scores:  14.31485 
## 
## 
## Species scores
## 
##                 PC1        PC2        PC3        PC4        PC5        PC6
## Callvulg -1.470e-01  0.3483315 -2.506e-01  0.6029965  0.3961208 -4.608e-01
## Empenigr  1.645e-01 -0.3731965 -5.543e-01 -0.7565217 -0.7432702 -3.484e-01
## Rhodtome -6.787e-02 -0.0810708 -6.464e-02 -0.0963929 -0.1749038 -4.008e-02
## Vaccmyrt -5.429e-01 -0.7446016  1.973e-01 -0.2791788 -0.5688937 -3.689e-01
## Vaccviti  9.013e-02 -0.7247759 -6.555e-01 -1.3366155 -0.7107105 -2.615e-01
## Pinusylv  3.404e-02 -0.0132527  4.465e-04 -0.0079399 -0.0012504  3.800e-03
## Descflex -7.359e-02 -0.0961364  6.485e-02 -0.0158203 -0.0741307 -5.328e-02
## Betupube -8.789e-04 -0.0008548 -6.637e-03 -0.0077726 -0.0072147  4.759e-04
## Vacculig -6.959e-02  0.2123669  6.410e-02  0.0136389 -0.0712061 -1.179e-01
## Diphcomp  3.807e-03  0.0333497 -1.026e-02 -0.0291455 -0.0086379 -2.263e-02
## Dicrsp   -4.663e-01 -0.3675288 -1.143e-01 -0.2490898  0.7694280  1.225e+00
## Dicrfusc -1.176e+00 -0.4484656 -1.338e+00  2.1943059 -0.9187333  4.027e-02
## Dicrpoly -1.597e-02 -0.0326269 -6.610e-02 -0.1166483 -0.0369723  6.576e-02
## Hylosple -2.935e-01 -0.4217426  4.523e-01 -0.0656152 -0.0358715 -2.234e-01
## Pleuschr -3.890e+00 -4.3657447  2.343e+00  0.3747564  0.1476496 -3.060e-01
## Polypili -5.032e-04  0.0069583  7.660e-03 -0.0005528 -0.0034856  5.849e-03
## [到达getOption("max.print") -- 略过28行]]
## 
## 
## Site scores (weighted sums of species scores)
## 
##         PC1      PC2      PC3      PC4       PC5      PC6
## 18 -1.02674  2.59169 -1.53869 -3.23113 -1.104731 -2.20341
## 15 -2.64700 -1.62646  1.01889  1.88048  1.152767 -1.41888
## 24 -2.44595 -2.01412  0.12182 -2.44215  5.875564  8.03640
## 27 -3.02575 -4.32492  4.44163 -1.54364 -2.466762 -2.57141
## 23 -1.86899 -0.35380 -1.98920 -4.11912 -2.428561 -0.85734
## 19 -0.02298 -1.59265 -0.43949 -1.43686  1.058122 -1.18048
## 22 -2.53975 -1.70578 -4.10001  7.63091 -5.062274 -0.64415
## 16 -2.08714  0.06163 -2.32296  5.84188 -3.568851  1.63566
## 28 -3.77083 -5.80241  6.57611  0.02751  0.908046 -3.10610
## 13 -0.38714  2.82852 -0.32352  2.12507  3.631355 -3.88730
## 14 -1.75570  0.75366 -5.69429  1.68697  6.098213 -1.28171
## 20 -1.65653  0.32765 -1.93100 -2.50536  0.065456  1.72887
## 25 -2.39601 -1.83554 -1.65364  0.24230  1.756334  4.36881
## 7  -1.08594  5.78134  1.89095 -0.90494 -0.006891 -2.44158
## 5  -0.80203  6.28624  4.85360  0.70195 -3.707269  5.90752
## 6  -0.19764  5.11581  1.24710 -0.70641  1.876853 -4.68229
## [到达getOption("max.print") -- 略过8行]]

绘图

vegan 的结果处理成 data.frame 才能用于 ggplot2。这个过程比较复杂,不过还好有人已经造好了轮子:ggvegan1

运行下面命令安装这个包。

devtools::install_github("gavinsimpson/ggvegan")

使用 autoplot()

library(ggvegan)
## 载入需要的程辑包:ggplot2
# 使用空白主题
theme_set(theme_bw())

# 一键绘图
autoplot(pca)

还可以使用 fortify() 将对象转变为 data.frame,然后再作图。

# 生成数据框
df.pca <- fortify(pca)

# 查看数据
knitr::kable(df.pca[1:5,1:5])
Score Label PC1 PC2 PC3
species Callvulg -0.1469634 0.3483315 -0.2505840
species Empenigr 0.1645106 -0.3731965 -0.5543083
species Rhodtome -0.0678718 -0.0810708 -0.0646412
species Vaccmyrt -0.5428697 -0.7446016 0.1973452
species Vaccviti 0.0901303 -0.7247759 -0.6554941
# 绘图
require(dplyr)
## 载入需要的程辑包:dplyr
## Warning: 程辑包'dplyr'是用R版本4.0.5 来建造的
## 
## 载入程辑包:'dplyr'
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
ggplot(mapping=aes(PC1,PC2,shape=Score,color=Score)) +
  geom_point(data=filter(df.pca,Score=="sites")) +
  geom_segment(data=filter(df.pca,Score=="species"),
               mapping = aes(x=0,y=0,xend=PC1,yend=PC2),
               arrow = arrow(length = unit(0.1,"inches")),show.legend = F) +
  geom_text(mapping = aes(PC1,PC2,label=Label),data=filter(df.pca,Score=="species"),show.legend = F)

除了PCA分析,ggvegan还顺便支持了CCA,RDA,metaMDS等vegan的分析结果。